Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling
نویسندگان
چکیده
منابع مشابه
Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling
The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heat...
متن کاملComposite Technologies for Large Wind Turbine Blades
As part of the U.S. Department of Energy’s Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multimegawatt range. The project team for this work includes experts in all areas of wind turbine blad...
متن کاملMaterials for Wind Turbine Blades: An Overview
A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for win...
متن کاملTesting and Condition Monitoring of Composite Wind Turbine Blades
In a wind turbine system, blades are one of the most critical components. They capture energy from wind and convert it to a mechanical energy for electricity power generation. However, once the blades are defective, the power generation efficiency of the turbine will be significantly affected. In worse case when the blade is seriously damaged, the turbine will have to be shut down completely fo...
متن کاملNumerical aeroelastic analysis of wind turbine NREL Phase VI Rotor
This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI[1] responses of HAWT[2]. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials
سال: 2017
ISSN: 1996-1944
DOI: 10.3390/ma10101157